Inference for a New Probabilistic Constraint Logic

نویسندگان

  • Steffen Michels
  • Arjen Hommersom
  • Peter J. F. Lucas
  • Marina Velikova
  • Pieter W. M. Koopman
چکیده

Probabilistic logics combine the expressive power of logic with the ability to reason with uncertainty. Several probabilistic logic languages have been proposed in the past, each of them with their own features. In this paper, we propose a new probabilistic constraint logic programming language, which combines constraint logic programming with probabilistic reasoning. The language supports modeling of discrete as well as continuous probability distributions by expressing constraints on random variables. We introduce the declarative semantics of this language, present an exact inference algorithm to derive bounds on the joint probability distributions consistent with the specified constraints, and give experimental results. The results obtained are encouraging, indicating that inference in our language is feasible for solving challenging problems.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Constraint Processing in Lifted Probabilistic Inference

First-order probabilistic models combine representational power of first-order logic with graphical models. There is an ongoing effort to design lifted inference algorithms for first-order probabilistic models. We analyze lifted inference from the perspective of constraint processing and, through this viewpoint, we analyze and compare existing approaches and expose their advantages and limitati...

متن کامل

Probabilistic constraint logic programming: formal foundations of quantitative and statistical inference in constrained based natural language processing

Structural ambiguity in linguistic analyses is a severe problem for natural language processing. For grammars describing a nontrivial fragment of natural language, every input of reasonable length may receive a large number of analyses, many of which are implausible or spurious. This problem is even harder for highly complex constraint-based grammars. Whereas the mathematical foundation of such...

متن کامل

Statistical Inference for Probabilistic Constraint Logic Programming

Most approaches to probabilistic logic programming deal with deduction systems and xpoint semantics for programming systems with user-speci ed weights attached to the formulae of the language, i.e, the aim is to connect logical inference and probabilistic inference. However, such a user-speci c determination of weights is not reusable and often complex. In various applications, automatic method...

متن کامل

Probabilistic Inductive Constraint Logic

Probabilistic logic models are used ever more often to deal with the uncertain relations that are typical of the real world. However, these models usually require expensive inference and learning procedures. Very recently the problem of identifying tractable languages has come to the fore. In this paper we consider the models used by the Inductive Constraint Logic (ICL) system, namely sets of i...

متن کامل

A Comparative Study of the Neural Network, Fuzzy Logic, and Nero-fuzzy Systems in Seismic Reservoir Characterization: An Example from Arab (Surmeh) Reservoir as an Iranian Gas Field, Persian Gulf Basin

Intelligent reservoir characterization using seismic attributes and hydraulic flow units has a vital role in the description of oil and gas traps. The predicted model allows an accurate understanding of the reservoir quality, especially at the un-cored well location. This study was conducted in two major steps. In the first step, the survey compared different intelligent techniques to discover ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2013